Comparing Groups

Week 10

Packages needed and a Note about Icons

Please load up the following packages. Remember to first install the ones you don't have.

You may come across the following icons. The table below lists what each means.

lcon	Description
••	Indicates that an example continues on the following slide.
	Indicates that a section using common syntax has ended.
ଡ	Indicates that there is an active hyperlink on the slide.
	Indicates that a section covering a concept has ended.

The compareGroups package

- Originally designed to read, interpret, summarize, display and analyze epidemiological data.
- Allows you to create everything from data summaries for quality control.

Starting up

Let's use one of the preloaded data sets: PREDIMED.

- longitudinal study containing several baseline characteristics of the participants as well as events occurred during the 7 years follow-up period given by variables event and toevent.
- Each individual has been assigned to a three intervention diet randomly given by the variable group.
- You can read the study via PubMed

Run the following

data("predimed")

View the Data

We can take a look at the data by

Yes

No

No

No

No

No

No

<NA>

8 5.946612

8 2.907598

9 4.761123

9 3.148528

predimed %>%
 head()

4

5

6

8

##		group	sex	age	smoke	bmi	waist	wth	htn	diab	hyperchol
##	1	Control	Male	58	Former	33.53	122	0.7530864	No	No	Yes
##	2	Control	Male	77	Current	31.05	119	0.7300614	Yes	Yes	No
##	4	MedDiet + VOO	Female	72	Former	30.86	106	0.6543210	No	Yes	No
##	5	MedDiet + Nuts	Male	71	Former	27.68	118	0.6941177	Yes	No	Yes
##	6	MedDiet + VOO	Female	79	Never	35.94	129	0.8062500	Yes	No	Yes
##	8	Control	Male	63	Former	41.66	143	0.8033708	Yes	Yes	Yes
##		famhist hormo p	ol4 toe	event	event						
##	1	No No	10 5.37	74401	Yes						
##	2	No No	10 6.09	97194	No						

No

No

Yes

Yes

Variable Names

You can take a look at the variables in the data set by running

names(predim	ed)					
## [1] "grou ## [7] "wth' ## [13] "p14'	ıp" "sex" "htn" "toevent"	"age" "diab" "event"	"smoke" "hyperchol"	"bmi" "famhist"	"waist" "hormo"	

Well that's not overtly helpful. Oh wait there's a codebook!

```
predimed_vars <-
    read_csv("predimed_codebook.csv")</pre>
```


Ok so let's take a look!

predimed_vars

$\pi\pi$	# <i>F</i>			
##		Name	Label	Codes
##		<chr></chr>	<chr></chr>	<chr></chr>
##	1	group	Intervention group	Control; MedDiet + Nuts; MedDiet + VOO
##	2	sex	Sex	Male; Female
##	3	age	Age	<na></na>
##	4	smoke	Smoking	Never; Current; Former
##	5	bmi	Body mass index	<na></na>
##	6	waist	Waist circumference	<na></na>
##	7	wth	Waist-to-height ratio	<na></na>
##	8	htn	Hypertension	No; Yes
##	9	diab	Type-2 diabetes	No; Yes
##	10	hyperchol	Dyslipidemia	No; Yes
##	11	famhist	Family history of premature CHD	No; Yes
##	12	hormo	Hormone-replacement therapy	No; Yes
##	13	p14	MeDiet Adherence score	<na></na>
##	14	toevent	follow-up to main event (years)	<na></na>
##	15	event	AMI, stroke, or CV Death	No; Yes

Descriptive Tables for Observations

If you want to create a quick table full of descriptives that aren't meant for exporting, use the descrTable() command

descrTable(group ~ ., predimed)

##					
##	Summary descriptives ta	able by 'Interv	ention group'		
##					
##					
##		Control	MedDiet + Nuts	MedDiet + VOO	p.overall
##		N=2042	N=2100	N=2182	
##					
##	Sex:				<0.001
##	Male	812 (39.8%)	968 (46.1%)	899 (41.2%)	
##	Female	1230 (60.2%)	1132 (53.9%)	1283 (58.8%)	
##	Age	67.3 (6.28)	66.7 (6.02)	67.0 (6.21)	0.003
##	Smoking:				0.444
##	Never	1282 (62.8%)	1259 (60.0%)	1351 (61.9%)	
##	Current	270 (13.2%)	296 (14.1%)	292 (13.4%)	
##	Former	490 (24.0%)	545 (26.0%)	539 (24.7%)	
##	Body mass index	30.3 (3.96)	29.7 (3.77)	29.9 (3.71)	<0.001
##	Waist circumference	101 (10.8)	100 (10.6)	100 (10.4)	0.045
##	Waist-to-height ratio	0.63 (0.07)	0.62 (0.06)	0.63 (0.06)	<0.001
##	Hypertension:				0.249
##	No	331 (16.2%)	362 (17.2%)	396 (18.1%)	

Descriptive Tables for Analysis

If you want to create a table full of descriptives that you can use for analysis, use the compareGroups() command

```
comparison <-
  compareGroups(group ~ ., predimed); comparison
##
##
  ----- Summary of results by groups of 'Intervention group'------
##
##
##
##
                                    Ν
                                        p.value method
                                                        selection
     var
## 1
     Sex
                                    6324 <0.001** categorical
                                                                  ALL
                                    6324 0.003** continuous normal ALL
## 2
     Age
     Smoking
                                    6324 0.444 categorical
## 3
                                                                  ALL
     Body mass index
                                    6324 <0.001** continuous normal ALL
## 4
     Waist circumference
## 5
                                    6324 0.045** continuous normal ALL
                                    6324 <0.001** continuous normal ALL
## 6
     Waist-to-height ratio
     Hypertension
## 7
                                    6324 0.249
                                                 categorical
                                                                  ALL
## 8
     Type-2 diabetes
                                    6324 0.017** categorical
                                                                  ALL
     Dyslipidemia
                                                 categorical
                                                                  ALL
##
  9
                                    6324 0.423
  10 Family history of premature CHD 6324 0.581 categorical
                                                                  ALL
##
                                    5661 0.850 categorical
  11 Hormone-replacement therapy
                                                                 ALL
##
                            6324 <0.001** continuous normal ALL
  12 MeDiet Adherence score
##
  13 follow-up to main event (years) 6324 <0.001** continuous normal ALL
##
```

Subsetting

The previous example gave us the gambit. In compareGroups(group ~ ., predimed), all of the variables were compared to each other. What if we just want to look at a few variables?

In this first example, we'll look at the impact of age, smoking, waist size, and hypercholesterol together on the group

```
##
##
##
  ----- Summary of results by groups of 'Intervention group'------
##
##
                          p.value method selection
       N p.value method sele
6324 0.003** continuous normal ALL
##
    var
## 1 Age
## 2 Smoking 6324 0.444 categorical ALL
  3 Waist circumference 6324 0.045** continuous normal ALL
## 4 Dyslipidemia 6324 0.423 categorical
                                             ALL
## ____
## Signif. codes: 0 '**' 0.05 '*' 0.1 ' ' 1
```

Notice by using the *p*-value from the column *p*.value, we have our first indicator that something happened. It is NOT a guarantee!

A Quick Note About the *p*-value

You may have read articles where the outcomes of a study are labeled as a fact because the results were *statistically significant*.

- Why isn't this right? Historically and even to this day, p-values are commonly used to test and dismiss H_0 , which generally states that there is no
 - difference between two groups, or
 - correlation between a pair of characteristics.

Traditionally, the mistake has been in the interpretation and reliance on the notion that

the smaller the **p-value**, the less likely an observed set of values would occur by chance.

So $p \le 0.05$ is generally taken to mean that a finding is statistically significant and therefore warrants publication which the American Statistical Association and anyone who knows better than to rely on a single measure can tell you is nonsense (what is called dumpster or garbage stats).

Ok That Wasn't a Quick A Note About the *p*-value

At best the *p*-value is what we call an *indicator* of something happening. Essentially it is one piece of evidence of many!

- What it doesn't mean? Firstly $p \le 0.05$ does not imply that there is a 95% chance that H_0 is correct.
- What it does mean! It signifies that if the H_0 is true and all other assumptions made are valid, then there is a 5% chance of obtaining a result at least as extreme as the one observed.
 - **Most important?** A *p*-value cannot indicate the importance of a finding
 - *Example*: a medication can have a statistically significant effect on patients' blood glucose levels without having a therapeutic effect.
- Time to get rid of it? Well no. It is an indicator but just because its not the end all be all measure doesn't mean it's not useful. So use it *but* also use others with it!
 - *Examples*: There are many but confidence intervals are another piece of information to use. Other approaches include Bayesian methods and effect sizes.

The actual last slide strictly about *p*-values

Here is a good summary...well a summary at least:

p-values do NOT

- indicate *reproducibility* or *evidence*
- *prove* or *disprove* a hypothesis
- tell you to accept a hypotheses

p-values do

- indicate that *something is happening*
- imply a *probability exists*
- get misinterpreted a lot (and I mean a lot!) yielding *Type I* and *Type II Errors*

Back to Subsetting

Now that we hopefully have an idea what the *p*-value implies, let's look at the impact of age, smoking, waist size, and hypercholesterol together on the the sample of females

```
##
##
  ----- Summary of results by groups of 'group'-----
##
##
##
          N
                         p.value method selection
##
    var
            3645 0.056* continuous normal sex == "Female"
## 1 Age
## 2 Smoking
            3645 0.907 categorical sex == "Female"
## 3 Waist circumference 3645 0.016** continuous normal sex == "Female"
## 4 Dyslipidemia 3645 0.319 categorical sex == "Female"
## ____
## Signif. codes: 0 '**' 0.05 '*' 0.1 ' ' 1
```

It seems that Age and Waist circumference may impact the Female population in the study (i.e. sample). We'd have to investigate *all* of the variables more to know for sure.

Getting all of the *p*-values

If we wanted to get an idea if the variables impact each other, we can use

pvals	<-	getResu	lts	(comparison,	
				<pre>"p.overall");</pre>	pvals

##	Sex	Age
##	8.138384e-05	2.665539e-03
##	Smoking	Body mass index
##	4.443536e-01	3.405257e-06
##	Waist circumference	Waist-to-height ratio
##	4.464591e-02	7.388314e-05
##	Hypertension	Type-2 diabetes
##	2.487579e-01	1.725231e-02
##	Dyslipidemia	Family history of premature CHE
##	4.229670e-01	5.813070e-01
##	Hormone-replacement therapy	MeDiet Adherence score
##	8.500945e-01	1.249646e-10
##	follow-up to main event (years)	AMI, stroke, or CV Death
##	2.076029e-25	6.386460e-02

Remember this is considering all of the variables, not those we subsetted!

APA Tables ...

We can also create an APA 7th edition formatted table!

export_comparison < createTable(comparison); export_comparison</pre>

##					
##	Summary descriptives t	able by 'Interv	ention group'		
##					
##					
##		Control	MedDiet + Nuts	MedDiet + VOO	p.overall
##		N=2042	N=2100	N=2182	
##					
##	Sex:				<0.001
##	Male	812 (39.8%)	968 (46.1%)	899 (41.2%)	
##	Female	1230 (60.2%)	1132 (53.9%)	1283 (58.8%)	
##	Age	67.3 (6.28)	66.7 (6.02)	67.0 (6.21)	0.003
##	Smoking:				0.444
##	Never	1282 (62.8%)	1259 (60.0%)	1351 (61.9%)	
##	Current	270 (13.2%)	296 (14.1%)	292 (13.4%)	
##	Former	490 (24.0%)	545 (26.0%)	539 (24.7%)	
##	Body mass index	30.3 (3.96)	29.7 (3.77)	29.9 (3.71)	<0.001
##	Waist circumference	101 (10.8)	100 (10.6)	100 (10.4)	0.045
##	Waist-to-height ratio	0.63 (0.07)	0.62 (0.06)	0.63 (0.06)	<0.001
##	Hypertension:				0.249

... and Plot ...

And we can also create an APA 7th edition formatted plot!

plot(export_comparison["sex"]) # barplot by sex

... and Other Plots

plot(export_comparison["age"]) # histogram and normality plot by age

Finally you can export your items! Here are some common ways to export tables

```
export2csv(export_comparison,
        file = "comparison.csv") # as a csv file
export2word(export_comparison,
        file = "comparison.docx") # as a word file
export2xls(export_comparison,
        file = "comparison.xls") # as a word file
export2pdf(export_comparison,
        file = "comparison.pdf") # as a pdf file
```

One More Thing: The GUI

If you do not like the command line interface of R or in general, there is an experimental click-click based built in app you can by typing

cGroupsGUI(predimed)

It appears to work fine on a PC. However if you have a Mac and *did not* install XQuartz as originally instructed, there is a *statistically significant* chance it may (a) not load or (b) have quirks if it does.

Thats it!