The Chi Square Test and Measures of Association

EDP 613

Week 12

A Note About The Slides

Currently the equations do not show up properly in Firefox. Other browsers such as Chrome and Safari do work.

Independence

Two variables that have no association with each other are **statistically independent**.

Frequencies

• expected frequencies

```
written f_e
```

what you would expect in a bivariate table if two variables were statistically independent

only assumption: the null hypothesis is true

calculated by

 $f_e = \frac{\text{column marginal} \cdot \text{row marginal}}{\text{total sample size}}$

• observed frequencies

written f_o what you would *observe* in a bivariate table given what you have

calculated by you or given

Chi-Square Test

written χ^2 .

assumes random sampling

Is an inferential test to find significant relationships between two variables.

Calculated by

$$\chi^2 = \sum rac{(f_o-f_e)^2}{f_e}$$

with

$$df=(r-1)(c-1)$$

Example: Social Media

The percent of people using at least one social media outlet is given below by age groups

In 2011:	
Age	Portion
8 - 29	820
) - 49	590
0 - 64	360
5+	120

a. Test the assumption that *users are equally likely* to be in each of the four age groups listed.

b. Which age group contributes the largest amount to the test statistic?

Example: Solution for 2011

a. We have

 H_0 : Users are equally likely to be in each of the four groups listed H_1 : Users are NOT equally likely to be in each of the four groups listed

Step 1: Find N

We have 820+590+360+120=1890 total responses

If the distribution was uniform across all four categories, we would expect that each had 1890/4 pprox 472 respondents

Age	Responses	χ^2
18 - 29	820	$rac{\left(820-472 ight) ^{2}}{472}pprox256.576$
30 - 49	590	$rac{\left(590-472 ight)^2}{472}pprox 29.500$
50 - 64	360	$rac{\left(360-472 ight) ^{2}}{472}pprox 26.576$
65+	120	$rac{\left(120-472 ight)^2}{472}pprox 62.509$

with the total

256.576 + 29.500 + 26.576 + 62.509 = 375.161

and

$$df = 4 - 1 = 3$$

Step 3: Make a Decision

In Appendix D

- Look at df=3
- + $\chi^2=375.161$ < the greatest p-value so p<0.001
- We reject H_0 implying that

respondents are not equally likely to be in each of the four age ranges listed

- 65+ contributes the greatest amount to the sum for the test statistic
- The observed count is much smaller than expected

Example: Solution for 2021

We have

 H_0 : Users are equally likely to be in each of the four groups listed H_1 : Users are NOT equally likely to be in each of the four groups listed

Statistical Methods I

We have 840+810+730+450=2830 total responses

If the distribution was uniform across all four categories, we would expect that each had 2830/4pprox707 respondents

Age	Responses	χ^2
18 - 29	840	$rac{\left(840-707 ight) ^{2}}{707}pprox25.020$
30 - 49	810	$rac{\left(810-707 ight) ^{2}}{707}pprox$ 15.006
50 - 64	730	$rac{\left(730-707 ight)^2}{707}pprox 0.748$
65+	450	$rac{\left(450-707 ight)^2}{707}pprox 93.422$

with the total

5.020 + 15.006 + 0.748 + 93.422 = 134.196

and

$$df = 4 - 1 = 3$$

Step 3: Make a Decision

In Appendix D

- Look at df=3
- + $\chi^2=33.526$ < the greatest p-value so p<0.001
- We reject H_0 implying that

respondents are not equally likely to be in each of the four age ranges listed

That's it. Take a break before our R session!

Statistical Metho<u>ds I</u>