Measures of Central Tendency EDP 613

Week 3

The mean, median and mode are measures of central tendency and attempt to summarize the typical value of a variable.

These may help us draw conclusions about a specific group or compare different groups using a single numerical value.

Recall Distributions

Skewed Left mean < median < mode Normal mean = median = mode Skewed Right mean > median > mode

Measures of Central Tendency: The Mean

- The *average* number.
- There are other types of means (e.g. geometric, harmonic, etc.) but we are only using the *arithmetic* mean.
- Essentially the **balancing point** or center of mass of a distribution
- Found by adding all data points and dividing by the number of data points

Measures of Central Tendency: The Median

- The *middle* number
- Essentially the point that cuts a data set in half
- Found by ordering data points from least to greatest or greatest to least and locating the middle number if there are two middle data points, they are averaged

Measures of Central Tendency: The Mode

- The *most frequent* number
- Essentially the point that occurs the most
- Found by determining the data point(s) that appear the most if none exists, then there is no mode

Basic Procedure: The Mean

• Mean

- Add the numbers up, divide by the total number of values in the set.
- $\,\circ\,$ Denoted by \overline{Y}

Compute the mean for the following sample: $\{21.3, 31.4, 12.7, 41.6\}$

Solution

$$\overline{Y} = rac{21.3 + 31.4 + 12.7 + 41.6}{4}$$
 $= rac{107}{4}$
 $= 26.75$

Give it a Try

Compute the mean for the following sample: $\{2, 5, 5, 7, 7, 8, 9\}$

Solution

$$\overline{Y} = rac{2+5+5+7+7+8+9}{6}$$
 $=rac{43}{7}$
 $pprox 6.14$

Basic Procedure: The Median

• Median

- Put the numbers in order from least to greatest or greatest to least and find the middle number.
- If there are two middle numbers, average them.

Example

Compute the median for the following sample: $\{2, 5, 5, 7, 7\}$

Solution

- Since these data point are already in numerical order, we can use them as is without reordering.
- n=5 which is an odd number so we can locate the median by

$$rac{n+1}{2} = rac{5+1}{2} = rac{6}{2} = 3$$

telling us to look in the *third position* from either side of the list of numbers.

• In

$$\{2, 5, 5, 7, 7\}$$

the middle number is 5 so that must be the median!

Give it a Try

Compute the mean for the following sample: $\{21.3, 31.4, 12.7, 41.6\}$

Solution

• Since these data point are NOT already in numerical order, we must reorder them.

 $\{12.7, 21.3, 31.4, 41.6\}$

- n=4 which is an even number so we can locate the median by taking the mean of the the numbers in

- $\frac{n}{2} = \frac{4}{2} = 2$, or the *second position* • $\frac{n}{2} + 1 = \frac{4}{2} + 1 = 3$, or the *third position*
- So the median is

$$\frac{21.3 + 31.4}{2} = 26.35$$

Basic Procedure: The Mode

• Mode

- Find the number(s) that appear the most.
 If none exists, then there is no mode.

Example

Compute the mode for the following sample: $\{2, 5, 5, 7, 7\}$

Solution

•

 Data point
 Frequency

 2
 1

 5
 2

 7
 2

- The data points 5 and 7 repeat twice while 2 only appears once.
- The modes are 5 and 7.
- Known as *bimodal*. Three modes would be *trimodal* and so on.

Give it a Try

Compute the mode for the following sample: $\{21.3, 31.4, 12.7, 41.6\}$

Solution

- No data point appears more than once points appear once.
- Therefore there is no mode.

Something to Think About

- A statistic is **resistant** if its value is not affected by extreme values (large or small) in the data set.
- Which of the measures of central tendency are resistant?

That's it. We will work more with R next week!