Estimations

EDP 613

Week 8

A Note About The Slides

Currently the equations may not show up properly in Firefox. Other browsers such as Chrome and Safari do appear to render them correctly.

A Note About Probability

We're going to introduce some concepts from Chapter 8 here.

From To

Descriptive Statistics

mathematical techniques for organizing and summarizing a set of numerical data

 $\overline{\mathbf{V}}$

 $\overline{\mathbf{V}}$

 \mathbf{L}

Inferential Statistics

generalizing from a sample to a population

- **Statistic** Mathematical expression that describes some aspects of a set of scores for a sample
- **Parameter** Describes some aspect of a set of scores for a population

First a Brief Intro to Hypothesis Testing

- Formally Testing an assumption about a population parameter
- In Better Terms An assumption about a particular situation of the world that is testable

The Null Hypothesis

- Represented as \bar{H}_0
- is basically what you expect to happen before you run an experiment
- You have to know what the Null is!

The Alternative Hypothesis

- Represented as H_1 (or H_A)
- is basically what else could happen if what you expect doesn't occur
- You don't have to know this!

Tests of Statistical Significance

- *Formally* Done to determine whether H_0 or $\overline{H_1}$ can be rejected
- Better Explanation Test to figure out whether you can reasonably say if your initial assumption won't happen
- Results If the outcomes of a study don't go against what you expected to happen, then you aren't finding anything new or surprising

A **(statistical) estimation** is a sample statistic is used to estimate the value of an unknown population parameter.

Idea of Positive and Negative Outcomes

- The Null hypothesis \overline{H}_0 is typically assuming nothing is going to happen
	- If H_0 turns out to be right, then its called a *negative* outcome because nothing changed.
	- If H_1 turns out to be right, then its called a *positive* outcome because something that you expected to happen didn't happen.
		- Experiment: Over the span of one year, a group of people with ADHD gets an experimental pill that may help them focus better than their current medication
			- \overline{H}_0 : Group stays the same (expected)
			- H_A : Group is more focused (what we want to happen)
		- Results: After an assessment
			- if the Group doesn't show greater focus, then we have a **negative** outcome because that's what was expected to happen
			- if the Group shows greater focus, then we have a **positive** outcome because that's NOT what was expected to happen

tictical Mat

Notes about H_0 **and** H_A

 H_A is typically not the only alternative explanation

- What if the Group was found to more focused?
	- As a rule of thumb don't say that $\bar{H_A}$ is correct unless you absolutely know there are two outcomes (aka *binary* outcomes)
	- Instead write that "we reject H_0 " because you don't know if that's the ONLY alternative hypothesis.
		- \circ It could also be that in other experiments that groups are found to be less focused!
- What if nothing happened to the Group? \bullet

ı

- You can absolutely say that \overline{H}_0 is correct because that's what you expected
- So you can write that "we accept H_0 "

Formal Table of Statistical Error Types

Nutshell Table of Statistical Error Types

You changed your mind

You changed your mind BUT the reality is you shouldn't have

Results in a **False Positive / Type I Error** True Positive *True Positive*

Decision Your first thought was right Your first thought was wrong

You changed your mind AND in reality that was the right decision

You didn't change your mind

You didn't change your mind AND in reality that was the right decision

You didn't change your mind BUT the reality is that you should have

Results in a True Negative **False Negative / Type II Error**

Example

Formally

- rejecting $\bar{H_0}$ when it is true
- the probability of making a **Type I Error**

In Better Terms

- the chance of making the wrong decision when what was initially expected to happen actually occurs
- Given by α
- Ranges from 0-1 like all other probabilities

Typically $\alpha = 0.05$ but its really context dependent

For airplanes

- if they fly people around, then when **analyzing failures**
	- you may want to lower the probability of making a wrong decision
	- use a **smaller** α
- if they're made of paper, then when **analyzing failures**
	- you might be willing accept the higher risk of making the wrong decision
- α and a set of the contract of the contrac

Beta

Formally

- not rejecting the H_0 when H_1 is true
- the probability of making a **Type II Error**

In Better Terms

- the chance of making the wrong decision when an something else actually occurs
- Given by β
- Ranges from 0-1 like all other probabilities

Power

- $1-\beta$ is called **statistical power**
- extremely important!
- Formally the probability of NOT making a Type II error
- In Better Terms the chance that you can separate if an outcome is a result of something occurring vs. pure luck!

Decision Making

Decision Making

Null $\qquad \qquad H_0=\ ^$ "Forecast says its NOT going to rain" Alternative $\vert H_1 = \vert$ "Something else will happen"

Note: You could have also gotten wet from snow, a flood, etc. so again **the alternative hypothesis generally does not imply the opposite!**

Estimation

- **(Statistical) Estimation** a sample statistic is used to estimate the value of an unknown population parameter
	- **Point estimation** use of sample data to calculate a single value
	- **Interval estimation** use of sample data to calculate a possible range of values

Selecting a sample mean

Updating Estimation for Sample Means

- **Point estimation** use of sample data to calculate a single **mean** value
	- \circ Benefit the sample mean will equal the population mean on average
	- \circ Drawback unable to figure out if a sample mean actually equals the population mean
- **Interval estimation** use of sample data to calculate a possible range of **mean** values

The Characteristic of Hypothesis Testing and Estimation

Confidence

- **Confidence Interval** an interval that contains an unknown parameter (e.g. μ) with certain degree of confidence
- **Level of Confidence** probability or likelihood that an interval estimate will contain an unknown population parameter

Determining the Confidence Interval

1. Calculate the standard error of the mean

$$
\sigma_{\overline{Y}} = \frac{\sigma}{\sqrt{N}}
$$

2. Decide on a level of confidence

Again its typical to have a 95% level of confidence thereby making

 $\alpha = 0.05$

Determining the Confidence Interval (continued)

3. $CI=\overline{Y}\pm z\cdot \sigma_{\overline{Y}}$

4. Interpret the results

Example

IQ scores in the general healthy population are approximately normally distributed with 100 ± 15 . In a sample of 100 students a sample mean IQ of 103. Find the 90% confidence interval for this data.

Firstly we have $N=100$, $\mu=100$, $\sigma=15$, and $\overline{Y}=103$.

1.

$$
\sigma_{\overline{Y}}=\frac{\sigma}{\sqrt{N}}=\frac{15}{\sqrt{100}}=1.50
$$

2. Want to find 90% confidence interval, so choose a 90% level of confidence.

$$
z\cdot \sigma_{\overline{Y}}=1.645\cdot 1.50=2.47
$$

$90\% CI = 103 \pm 2.47 = (105.47, 100.53)$

4. We are 90% confident that the overall mean IQ is between 100.53 and 105.47.

That's it. Take a break before our R session!