
Pivoting and Measuring Confidence
Week 8

Packages needed and a Note about Icons
Please load up the following packages. Remember to first install the ones you don't have.

library(tidyverse)
library(mosaic)
library(ggplot2movies)

You may come across the following icons. The table below lists what each means.

Icon Description

Indicates that an example continues on the following slide.

Indicates that a section using common syntax has ended.

Indicates that there is an active hyperlink on the slide.

Indicates that a section covering a concept has ended.

2 / 70

https://edp613.asocialdatascientist.com/

What is a confidence interval?
A confidence interval (CI) gives a range of possible values for a parameter. It depends on a specified confidence level with

higher confidence levels corresponding to wider confidence intervals

lower confidence levels corresponding to narrower confidence intervals.

The most common confidence levels include 90%, 95%, and 99%.

6 / 70

https://edp613.asocialdatascientist.com/

Problems with how confidence intervals are
taught
You were just taught about the confidence interval in an bad way!

Finding confidence intervals for some mean is to first assume a normal curve for a population and then magic

But assuming normality is a BIG assumption!

9 / 70

https://edp613.asocialdatascientist.com/

Bootstrapping
Hypothesis testing

We simply want to if our or is correct.

First step in being able to generalize

Typically we have a sample of a population’s data so we can

1. take repeated samples from a sample data of size whatever

2. calculate the mean for each of these samples

3. created a new distribution of these means

4. estimate the population distribution

aka bootstrapping

5. calculate the confidence interval (CI)

H0 H1

17 / 70

https://edp613.asocialdatascientist.com/

ggplot2movies
We'll look at CIs, but first let's look at the ggplot2movies data set...

head(movies)

A tibble: 3 × 4
Decision Delicious Disgusting Totals
<chr> <chr> <chr> <chr>
1 Yes 40.00% (4) 43.75% (7) 42.30% (11)
2 No 60.00% (6) 56.25% (9) 57.69% (15)
3 <i>N</i> (10) (16) (26)

18 / 70

https://edp613.asocialdatascientist.com/

...its size...

dim(movies)

[1] 3 4

That's 58,788 rows by 24 columns!

19 / 70

https://edp613.asocialdatascientist.com/

... and the names of its columns.

names(movies)

[1] "Decision" "Delicious" "Disgusting" "Totals"

You can see more about the functionality by looking at its documentation. For now, here's what the variables mean:

title. Title of the movie.
year. Year of release.
budget. Total budget (if known) in US dollars
length. Length in minutes.
rating. Average IMDB user rating.
votes. Number of IMDB users who rated this movie.
r1-10. Multiplying by ten gives percentile (to nearest 10%) of users who rated this movie a 1.
mpaa. MPAA rating.
Action, Animation, Comedy, Drama, Documentary, Romance, Short. Binary variables representing if movie was classified as
belonging to that genre.

20 / 70

https://cran.r-project.org/web/packages/ggplot2movies/ggplot2movies.pdf
https://www.motionpictures.org/film-ratings/
https://edp613.asocialdatascientist.com/

ggplot2movies::movies %>%
 select(Action, Animation, Comedy,
 Drama, Documentary, Romance,
 Short) %>%
 pivot_longer(
 everything(),
 names_to = "genre"
)

A tibble: 411,516 × 2
genre value
<chr> <int>
1 Action 0
2 Animation 0
3 Comedy 1
4 Drama 1
5 Documentary 0
6 Romance 0
7 Short 0
8 Action 0
9 Animation 0
10 Comedy 1
… with 411,506 more rows

21 / 70

https://edp613.asocialdatascientist.com/

In instances where we have to go from a

long to wide data set, we'd use a command called pivot_wider

wide to long data set, we use a command called pivot_longer

For more information, take a look at this fantastic overview courtesy of R-Ladies Sydney. For an advanced walkthrough, the Data Wrangling site over at Stanford is a great resource.

22 / 70

https://rladiessydney.org/courses/ryouwithme/02-cleanitup-4/
https://dcl-wrangle.stanford.edu/pivot_basic.html
https://edp613.asocialdatascientist.com/

pivot_longer
It is pretty rare that at this stage in your academic development that you need to go from long to wide so we'll be concentrating on the
converse with pivot_longer .

OK let's begin!

The original graphics here were created by RStudio's Allison Hill. I have amended them for aesthetic purposes

23 / 70

https://alison.rbind.io/
https://edp613.asocialdatascientist.com/

An overview of pivot_longer
We'll concentrate one two options in pivot_longer : names_to and values_to .

Remember you can always run ? in front of any command in the Console to get more information about it. For pivot_longer , we
would simply type in

?pivot_longer

to see other options.

24 / 70

https://edp613.asocialdatascientist.com/

If you want to follow along with the fake data set we'll be using, run the following command to build the tibble

juniors_multiple <-
 tribble(
 ~ "baker", ~"cinnamon_1", ~"cardamom_2", ~"nutmeg_3",
 "Emma", 1L, 0L, 1L,
 "Harry", 1L, 1L, 1L,
 "Ruby", 1L, 0L, 1L,
 "Zainab", 0L, NA, 0L
)

and check it just to make sure

juniors_multiple

A tibble: 4 × 4
baker cinnamon_1 cardamom_2 nutmeg_3
<chr> <int> <int> <int>
1 Emma 1 0 1
2 Harry 1 1 1
3 Ruby 1 0 1
4 Zainab 0 NA 0

Looks good! Let's convert this!

25 / 70

https://edp613.asocialdatascientist.com/

To remind you of what the juniors_multiple data frame looks like, we have

baker cinnamon_1 cardamom_2 nutmeg_3

Emma 1 0 1

Harry 1 1 1

Ruby 1 0 1

Zainab 0 NA 0

We can assign names to the eventual columns using names_to and values_to .

26 / 70

https://edp613.asocialdatascientist.com/

baker cinnamon_1 cardamom_2 nutmeg_3

Emma 1 0 1

Harry 1 1 1

Ruby 1 0 1

Zainab 0 NA 0

We can assign names to the eventual columns using names_to and values_to .

27 / 70

https://edp613.asocialdatascientist.com/

baker cinnamon_1 cardamom_2 nutmeg_3

Emma 1 0 1

Harry 1 1 1

Ruby 1 0 1

Zainab 0 NA 0

Here you can see the first column cinnamon_1 and its value 1 associated with the first row Emma becomes our first two values under
the two columns spice and correct for our pivoted data frame.

28 / 70

https://edp613.asocialdatascientist.com/

This pattern continues until a whole row is used up.

29 / 70

https://edp613.asocialdatascientist.com/

Then it repeats for the next row of values...

30 / 70

https://edp613.asocialdatascientist.com/

...and so forth...

31 / 70

https://edp613.asocialdatascientist.com/

...until we run out of rows...

32 / 70

https://edp613.asocialdatascientist.com/

...and get the final table of pivoted values.

33 / 70

https://edp613.asocialdatascientist.com/

We can even amend the current command to include things like order !

34 / 70

https://edp613.asocialdatascientist.com/

Shortcut
Rather than accounting for every column, you can just tell R not to account for columns

juniors_multiple %>%
 pivot_longer(-baker,
 names_to = c('spice', 'order'),
 names_sep = '_',
 values_to = 'correct')

A tibble: 12 × 4
baker spice order correct
<chr> <chr> <chr> <int>
1 Emma cinnamon 1 1
2 Emma cardamom 2 0
3 Emma nutmeg 3 1
4 Harry cinnamon 1 1
5 Harry cardamom 2 1
6 Harry nutmeg 3 1
7 Ruby cinnamon 1 1
8 Ruby cardamom 2 0
9 Ruby nutmeg 3 1
10 Zainab cinnamon 1 0
11 Zainab cardamom 2 NA
12 Zainab nutmeg 3 0

35 / 70

https://edp613.asocialdatascientist.com/

Single column types
pivot_wider is great for columns of the same type. For example, if we run

glimpse(juniors_multiple)

Rows: 4
Columns: 4
$ baker <chr> "Emma", "Harry", "Ruby", "Zainab"
$ cinnamon_1 <int> 1, 1, 1, 0
$ cardamom_2 <int> 0, 1, 0, NA
$ nutmeg_3 <int> 1, 1, 1, 0

all we have are integers...

36 / 70

https://edp613.asocialdatascientist.com/

Multiple column types
... but for the following

juniors_multiple_full <-
 tribble(
 ~ "baker", ~"score_1", ~"score_2", ~"score_3",
 ~ "guess_1", ~"guess_2", ~"guess_3",
 "Emma", 1L, 0L, 1L, "cinnamon", "cloves", "nutmeg",
 "Harry", 1L, 1L, 1L, "cinnamon", "cardamom", "nutmeg",
 "Ruby", 1L, 0L, 1L, "cinnamon", "cumin", "nutmeg",
 "Zainab", 0L, NA, 0L, "cardamom", NA_character_, "cinnamon"
)

juniors_multiple_full

A tibble: 4 × 7
baker score_1 score_2 score_3 guess_1 guess_2 guess_3
<chr> <int> <int> <int> <chr> <chr> <chr>
1 Emma 1 0 1 cinnamon cloves nutmeg
2 Harry 1 1 1 cinnamon cardamom nutmeg
3 Ruby 1 0 1 cinnamon cumin nutmeg
4 Zainab 0 NA 0 cardamom <NA> cinnamon

37 / 70

https://edp613.asocialdatascientist.com/

glimpse(juniors_multiple_full)

Rows: 4
Columns: 7
$ baker <chr> "Emma", "Harry", "Ruby", "Zainab"
$ score_1 <int> 1, 1, 1, 0
$ score_2 <int> 0, 1, 0, NA
$ score_3 <int> 1, 1, 1, 0
$ guess_1 <chr> "cinnamon", "cinnamon", "cinnamon", "cardamom"
$ guess_2 <chr> "cloves", "cardamom", "cumin", NA
$ guess_3 <chr> "nutmeg", "nutmeg", "nutmeg", "cinnamon"

...we have both character and numeric vectors.

38 / 70

https://edp613.asocialdatascientist.com/

Try running the following

juniors_multiple_full %>%
 pivot_longer(score_1:guess_3,
 names_to = c('score', 'guess'),
 names_sep = "_",
 values_to = 'correct')

Do you get Error: Can't combine score_1 <integer> and guess_1 <character>.? So what can you do?

Well since computers are stupid, you have to tell R what to look for.

39 / 70

https://edp613.asocialdatascientist.com/

juniors_multiple_full %>%
Don't do anything with the baker column
 pivot_longer(-baker,
Treat all columns the same and order them
 names_to = c(".value", "order"),
Control how the column names are broken up
 names_sep = "_")

A tibble: 12 × 4
baker order score guess
<chr> <chr> <int> <chr>
1 Emma 1 1 cinnamon
2 Emma 2 0 cloves
3 Emma 3 1 nutmeg
4 Harry 1 1 cinnamon
5 Harry 2 1 cardamom
6 Harry 3 1 nutmeg
7 Ruby 1 1 cinnamon
8 Ruby 2 0 cumin
9 Ruby 3 1 nutmeg
10 Zainab 1 0 cardamom
11 Zainab 2 NA <NA>
12 Zainab 3 0 cinnamon

40 / 70

https://edp613.asocialdatascientist.com/

ggplot2movies::movies %>%
 select(Action, Animation, Comedy,
 Drama, Documentary, Romance,
 Short) %>%
 pivot_longer(everything(),
 names_to = "genre") %>%
 group_by(genre) %>%
 dplyr::tally(value)

A tibble: 7 × 2
genre n
<chr> <int>
1 Action 4688
2 Animation 3690
3 Comedy 17271
4 Documentary 3472
5 Drama 21811
6 Romance 4744
7 Short 9458

41 / 70

https://edp613.asocialdatascientist.com/

ggplot(movies_by_genre,
 aes(x = genre,
 y = n,
 fill = -n)) +
 geom_bar(stat='identity',
 show.legend = FALSE) +
 labs(title = "Count of Genre",
 x = "Genre",
 y = "Count") +
 theme_minimal()

42 / 70

https://edp613.asocialdatascientist.com/

ggplot2movies::movies %>%
 ggplot(aes(x = rating)) +
 geom_histogram(aes(fill = -..count..),
 color = "white",
 bins = 30,
 show.legend = FALSE) +
 theme_minimal()

43 / 70

https://edp613.asocialdatascientist.com/

pop <-
 ggplot2movies::movies %>%
 ggplot(aes(x = rating)) +
 geom_histogram(aes(fill = -..count..),
 color = "white",
 bins = 30,
 show.legend = FALSE) +
 theme_minimal() +
 ggtitle("Population")

44 / 70

https://edp613.asocialdatascientist.com/

Purpose
We would like to produce a confidence interval for the population mean rating. Let's first pretend we had to take a sample of
from the movies. To do this, we'll use the sample_n command from the dplyr package.

set.seed(999) # Random number generator

movies_sample <-
 ggplot2movies::movies %>%
 sample_n(70)

n = 70

N = 58788

45 / 70

https://edp613.asocialdatascientist.com/

ggplot(movies_sample,
 aes(x = rating)) +
 geom_histogram(aes(fill = -..count..),
 color = "white",
 bins = 30,
 show.legend = FALSE) +
 theme_minimal()

46 / 70

https://edp613.asocialdatascientist.com/

Population Estimation
The histogram is an estimate of our population distribution histogram

To estimate a range of values, we use the mean of the sample

(movies_sample_mean <-
 movies_sample %>%
 summarize(mean = mean(rating)))

A tibble: 1 × 1
mean
<dbl>
1 5.81

This is a single estimation.

Earlier you sampled from the population - aka sampling with replacement.

A good way to to this is to add parentheses around a variable

51 / 70

https://edp613.asocialdatascientist.com/

resample(movies_sample) %>%
 arrange(orig.id) %>%
 summarize(mean = mean(rating))

A tibble: 1 × 1
mean
<dbl>
1 6.09

52 / 70

https://edp613.asocialdatascientist.com/

This is only one sample mean!

53 / 70

https://edp613.asocialdatascientist.com/

do(10) *
 (resample(movies_sample) %>%
 summarize(mean = mean(rating)))

mean
1 5.537143
2 5.815714
3 5.804286
4 5.837143
5 5.920000
6 5.850000
7 5.628571
8 5.955714
9 5.755714
10 5.778571

54 / 70

https://edp613.asocialdatascientist.com/

But a sample of 10 is so lame. Let's think big and try 10000!

not_lame <-
 do(10000) * summarize(resample(movies_sample),
 mean = mean(rating))

...wait a bit

56 / 70

https://edp613.asocialdatascientist.com/

ggplot(data = not_lame ,
 mapping = aes(x = mean)) +
 geom_histogram(aes(fill = -..count..),
 color = "white",
 bins = 30,
 show.legend = FALSE) +
 theme_minimal()

57 / 70

https://edp613.asocialdatascientist.com/

samp <-
 ggplot(data = not_lame ,
 mapping = aes(x = mean)) +
 geom_histogram(aes(fill = -..count..),
 color = "white",
 bins = 30,
 show.legend = FALSE) +
 theme_minimal() +
 ggtitle("Sample")

58 / 70

https://edp613.asocialdatascientist.com/

Comparison

59 / 70

https://edp613.asocialdatascientist.com/

Confidence using quantiles
quantiles are

cut points dividing the range of a probability distribution into continuous intervals with equal probabilities

found by isolating the middle 95% of values which corresponds to a 95% confidence interval for the population mean rating

(ci95_mean <- confint(not_lame,
 level = 0.95,
 method = "quantile"))

name lower upper level method estimate
1 mean 5.49 6.134286 0.95 percentile 5.814286

we can be 95% confident that the true mean rating of ALL IMDB ratings is between 5.49 and about 6.13

64 / 70

https://edp613.asocialdatascientist.com/

Confidence using standard error
standard error is

the standard deviation of the sampling distribution

approximated by the bootstrap distribution or the null distribution depending on the context.

(ci95_mean <- confint(not_lame,
 level = 0.95,
 method = "stderr"))

Warning: confint: Using df = Inf.

name lower upper level method estimate margin.of.error
1 mean 5.488206 6.139446 0.95 stderr 5.814286 0.32562

we can be 95% confident that the true mean rating of ALL IMDB ratings is between 5.49 and about 6.13

69 / 70

https://edp613.asocialdatascientist.com/

Thats it!
Yeah I just taught pivot_longer() in a class of 100 and the reaction was just a collective "OK cool whatever" while I'm up

there like pic.twitter.com/gLuOuzoCmf

— Allison Horst (@allison_horst) October 31, 2019

70 / 70

https://t.co/gLuOuzoCmf
https://twitter.com/allison_horst/status/1190001300622036992?ref_src=twsrc%5Etfw
https://edp613.asocialdatascientist.com/

